مقالات ترجمه شده     

ترجمه سيستم تعليق (1)

ترجمه سيستم تعليق (2)

ترجمه ترمزهاي ديسكي

ترجمه  كلاچ و  فلايويل

ترجمه كاركرد ياتاقان

ترجمه علل صداي دنده عقب

 

مشخصات فني اتومبيل ها

مشخصات  فني اتومبيل بنز

مشخصات فني لگسز ls460

مشخصات فني لگسز GS110

مشخصات فني لگسز IS300

مشخصات فني لگسز rx350

مشخصات فني پرادو

مشخصات  فني مورانو

مشخصات فني ماكسيما

مشخصات فني سانتافه

مشخصات تويوتا كمري

مشخصات فني تويوتا اريون

مشخصات فني سوناتا

مشخصات فني زانتيا

مشخصات فني سوزوكي

مشخصات هيوندا جنسيس

مشخصات فني هيونداي ازرا

مشخصات هيونداي توسان

مشخصات هيونداي وراكروز

مشخصات كيا اپتيما

مشخصات كيا سورنتو

مشخصات كيا اوپيرتوس

مشخصات كيا اسپورتيج

مشخصات فنی مزدا 3

مشخصات فني صبا

مشخصات فني سمند

مشخصات فني سرير

مشخصات سه ات لئون

مشخصات فني ريو

مشخصات فني پيكاپ

مشخصات فني تندر 90

مشخصات فني كوپه

مشخصات فنی سافاری

مشخصات پژو  405 GLX

مشخصات پژو 206

مشخصات فني پژو 407

مشخصات فني C5

مشخصات فني پارس

مشخصات فنی MVM 110

مشخصات نیسان قشقائی

مشخصات نیسان تینا

مشخصات فني پرايد

مشخصات فنی نیو پراید

مشخصات فنی پراید هاچ بگ

مشخصات فني پيكان

مشخصات خودروی مینیاتور

مشخصات مزدا B2000

مشخصات فنی نارون

 مزدا تک کابین و دو کابین

وانت دو کابین کاپرا

مشخصات وانت بار دوگانه سوز

 مشخصات زامیاد Z 24nb

مشخصات فني روا

مشخصات ون c11v50

مشخصات  ون s11v35

مشخصات هارد تاپ

مشخصات فنی دوو سیلو

مشخصات فنی دوو ماتیز

مشخصات فنی جیپ صحرا

مشخصات فنی  سرانزا

مشخصات فنی رونیز

مشخصات فنی پاجرو suv

مشخصات فنی پاریز

مشخصات فنی پاژن V63000

مشخصات فنی سپند

مشخصات فنی سیناد 2

مشخصات فني مگان 1600

مشخصات فني کشنده زامياد

مشخصات فني كاميون FH

مشخصات volvo FH 6*4

کمپرسی Renault Midlum

مشخصات باری budsun cng

مشخصات فني ايسوزوNKR

مشخصات تراكتور ITM299

مشخصات Yutong Midibus F33

 اتوبوس برقی6061EG

مشخصات فني ژيان

مشخصات موتورسیکلت  

مشخصات موتورسیکلت v6

مشخصات موتورسیکلت ارین

مشخصات نامی cg125

مشخصات نامی cg125 سمند

مشخصات نامی cg125پیکان

مشخصات نامی cg125c

مشخصات نامی cg200

مشخصات نامی bd125

 

              اخبار خودرو      

مزدا 2 خودروی سبز

نمایشگاه خودرو لس انجلس

موتور سیکلت نوری

خودرويي به‌سبك فرانسوي

اینده و موتورسیکلت های خورشیدی و برقی

خودروی هوشمند اینتل

سبزی و شکلات در خودروسازی

خودرویی برای خانواده

بوگاتي گاليبيه

بی ام و ویژن bmv

بی ام و 328

پورشه هیبریدی

تازه ترین محصول دوج

 

   مشخصات گیربکس ها 

مشخصات گیربکس 206

مشخصات گیربکس 405

مشخصات گیربکس RD

 

               تاريخچه            

تاريخچه پيل سوختي

تاريخچه لاستيك

تاريخچه گاز طبيعي

تاريخچه جيپ

تاريخچه لندرور

تاریخچه رولزرویس

تاریخچه فولكس

تاریخچه فورد

تاريخچه بنز

تاریخچه فولوکس بیتل

تاریخچه خودرو بنزین سوز

تاریخچه برف پاکن

تاریخچه هلیکوپتر

تاریخچه هواپیما

 دوچرخه سواری کوهستان

 

 

 

 

 

               پيوست             

تیک آف

ارم خودروهاي جهان

دستگاه هاي معاينه فني

سوخت جی تی ال

سایتهای معتبر مکانیک

 ارگونومی

كيسه هوا

انواع گازها

الکل

بیو مکانیک

خودرو سازی ژاپن

موتور سيكلت

شيشه گرم كن عقب

اتومبيل هاي اينده

دوده و لجن سياه

سيستم اتومبيل مزدا 3

ازمايش گريس خودرو

ايروديناميك اتومبيل

تازهاي صنعت خودروسازي

تولید سوخت با موریانه

كمپرسور تهويه مطبوع

اصطلاحات اجزاي خودرو

اصطلاحات مخفف خودرو

اصطلاحات مخفف اتومبيل

اصطلاحات صنعت خودرو

سایتهای مهندسی مکانیک

سيستم خودروي BMW

طبقه بندي انواع تراكتور

علائم جلوي داشبورد

بازديد دوره اي اتومبيل

كليات سيستم خودرو

عيب يابي اتومبيلهاي بنزيني

خروج خودرو از باتلاق

طريقه رانندگي در كوير

رانندگي در هواي مه الود

توصیه زمستانی کردن خودرو

اختراع شیشه ایمنی

فهرست قطعات خودرو

فولاد ضد زنگ در خودروسازی

بازدید های قبل از مسافرت

هوندا چگونه متولد شد

 

               متفرقه             

انواع پمپ ها و اصول کارشان 

مقایسه هیدرولیک و نیوماتیک

سيستم ترمز هواپيماه

سيستم موتورهاي جت (1)

سيستم موتورهاي جت (2)

سيستم و قطعات تانك

قطارهاي مغناطيسي

قسمت هاي  دوچرخه

شيرهاي كنترل جهت

موتورهاي توربين گاز

اصطلاحات دوچرخه

استانداردهاي ايزو

كمپرسور پيستوني

ميكرومتر و كوليس

ازمایشگاه متالوگرافی

كوپلينگ ها

دماسنج

سيستم جت (1)

سيستم جت (2)

كمپرسورها (1)

كمپرسورها (2)

كمپرسورها (3)

 

 

 

 

 

         فروشگاه خودرو      

مجموعه بی نظیر آموزشی مکانیک خودرو

آموزش تعميرات جزء به جزء كليه محصولات پارس خودرو

آموزش تعميرات خودرو

آموزش تعميرات پرايد

فیلمهای آموزشی تعمیرات خودرو

پژو 206

 






 

            منوي اصلي          

صفحه اصلي

مديريت سايت

           مجموعه موتور       

موتور اتومبيل

پيستون موتور

رينگ پيستون

سرسيلندر موتور

بلوكه سيلندر

سوپاپ موتور

شاتون و گژنپين

ياتاقان موتور

ميل سوپاپ

ميل لنگ و فلايويل

خرابي سوپاپ

تايمينگ متغير سوپاپ

تايمينگ و قيچي

منيفولد و  سوپاپ (1)

منيفولد و سوپاپ (2)

توربو  شارژ

موتور وانكل

قطعات سرسیلندر

شبه توربين كالسكه اي

خودروي هيبريدي

خودروهاي هيبريدي

ترجيح موتور ديزل بر بنزيني

هيبريدي و باطري دو قطبي

اسب بخار چيست

روشن و خاموش کردن خودکار

سوپاپ کنترل تهویه کارتر

حرارت موتور و کاهش سوخت

 

 

اموزش تعمیرات زانتیا

 

 

 

 

   خنك كاري و روغن كاري 

روغنكاري موتور

وظايف روغن

تعويض فيلتر روغن

روغن موتور و ترمز

سيستم خنك كاري موتور

سيستم خنك كاري خودرو

مایعات خنک کننده موتور

رادياتور و انتقال حرارت

كولر خودرو

اویل پمپ

تعویض فیلتر و روغن موتور

زمان مناسب تعویض روغن

 

         سوخت رساني        

اتانول به عنوان سوخت

سوخت هيدروژن

سوخت و احتراق

روشهاي كاهش سوخت

اثر ميدان مغناطيسي بر سوخت

سيستم مديريت سوخت

پمپ بنزين

كاربراتور

سنسور اكسيژن

مبدل كاتاليستي

انواع گازها

 كنترل الكترونيكي با ECU

سیستم ریل مشترک

عیب یابی سیستم سوخت

نحوه کارکردن انژکتور  

سوخت رساني HEUI

 

             انتقال قدرت         

كلاچ خودرو

انواع كلاچ خودرو (1)

انواع كلاچ خودرو (2)

انواع كلاچ خودرو (3)

انواع چرخ دندها

گيربكس مكانيكي

جعبه دنده (1)

جعبه دنده (2)

سيستم پمپ ها

سيستم هيدروليك

مباني هيدروليك

پمپ در سيستم هيدروليك

هيدروليك گيربكس اتوماتيك

انتقال قدرت اتوماتيك

ميل گاردان

ديفرانسيل

کلاج اتوماتیک هوشمند

 

            برق اتومبيل          

باتري خودرو (1)

باتري خودرو (2)

باتري خودرو (3)

باتري خودرو (4)

الكتريسيته نوترون و .....

خازن چیست

ديود چیست

مقاومت چیست

اسيلوسكوپ

پيل سوختي

استارت موتور

دينامهاي الترناتور

شمع چيست (1)

شمع چيست (2)

سيستم جرقه

انواع سيستم جرقه

جرقه زني بي دلكو

مالتي پلكس

مالتي پلكس پژو 206

سيستم چراغهاي جلو

جاسوسی زیر کاپوت خودرو

بررسی شمع خودرو

سر شمع های موتور

سیستم های امنیتی

سیستم جرقه زنی اتومبیل

قفل مرکزی و بالابر برقی

 

 

 

 

          سيستم ترمز          

تعاريف ترمز

سيلندر اصلي و چرخ

ترمزهاي كاسه اي

بوسترهاي ترمز

ترمز دستي

عوامل موثر بر صداي لنت

سوپاپ هاي هيدروليكي

ترمز ABS

روغن ترمز

صدای ترمز بر اساس فرکانس

 

      شاسي و جلوبندي      

شاسي هاي خودرو

سيستم تعليق (1)

سيستم تعليق (2)

زاويه چرخ ها

فنرهاي تعليق

كمك فنرها

فرمان هاي مكانيكي

سيستم فرمان برقي

سپرهاي خودرو

تاير و چرخ

تایر خود بادشونده

تاير بدون هوا و پنچري

نانو در لاستيك سازي

كاهش وزن تاير

تنظيم باد تاير

نشانگر دهنده فشار تایر

روش عيب يابي كمك فنر خودرو

چرا باید دوبار کلاچ بگیرید

شاسی مونوکوک

 

          مجموعه ديزل         

پمپ سه گوش

پمپ انژكتور اسيابي

رگلاتور وزنه اي

رگلاتور خلائي

دستگاه اوانس تزريق

اتاق احتراق ديزل

عيب يابي موتور ديزل

رله تبديل ديزل

 

             نرم افزار             

حل مساله با نرم افزار adams

معرفی نرم افزار solid works

تاریخچه کتیا

طراحی فنر در کتیا

میانبرها در کتیا catia

نکات جالب در کتیا

 

اموزش تعمیرات سمند

 

 

 

       خودروهای گاز سوز    

بررسی تفاوت بنزین و CNG

خودرو گاز طبیعی سوز

سوخت رساني CNG

سوخت رساني LPG

مخازن CNG

توزیع کننده

خشک کن

 افت قدرت خودروهای گازسوز

چرا LPG رفت و CNG امد

ضرورت استفاده اسی ان جی 
  انواع کیتهای تبدیل
  صنعت خودروهای گازسوز
  الایندگی خودروهای گازسوز
  طبقه بندی خودرو گازسوز
  سوخت رساني گازي
 
گاز سوز كردن خودرو
  LNG گاز طبيعي فشرده

 

      مطالب به روز شده      

گارد

وینچ و نحوه کارکرد

شخصيت فردي و رانندگي

سنسور ها و استپ موتور

سیستم کنترل پایداری

الايندهاي اتومبيل (1)

الايندهاي اتومبيل (2)

الايندهاي اتومبيل(3)

الايندهاي اتومبيل (4)

الايندهاي خودرو (5)

منيفولد ساده و متغير

سيستم ESP

انواع سوختها

انژكتور (1)

انژكتور (2)

مولتي پلكس 206 (1)

مولتي پلكس 206 (2)

مولتي پلكس 206 (3)

مولتي پلكس 206 (4)

سيستم توربو شارژ (1)

سيستم توربو شارژ (2)

موتورهاي وانكل يا دوراني

سوخت رساني زانتيا (1)

سوخت رساني زانتيا (2)

سوخت رساني زانتيا (3)

سوخت رساني زانتيا (4)

سنسورها  (1)

سنسورها (2)

سيستم سوپاپ VVT

اتومبيل و كنترل الودگي

 اتومبيلهاي انژكتوري1 

 اتومبيلهاي انژكتوري2

افزايش توان (تيونينگ)

كمك فنر توليد كننده توانpgsa

سیستم GDI بخش اول

سیستم  GDI بخش دوم

مبدل  کاتالیستی (1)

مبدل کاتالیستی (2)

دسته موتور اتومبیل

ماشین مسابقه ای

تزریق GDI بخش اول

تزریق GDI بخش دوم

تزریق GDI بخش سوم

مهندسی مکانیک

تونل باد

سیستم GPS

فرمول یک

سرعت سنج

اتومبیل hy-wire

کمک فنر MR

اصطلاحات موتور

داشبوردهای پیشرفته

مدارهای الکترونیکی خودرو

گیربکس AL4 بخش اول

گیربکس AL4 بخش دوم

نرم افزارهای مهندسی مکانیک

سیستم ارتباطی و صوتی اتومبیل

زنجیر چرخ پارچه ای

سیستم وفقی کنترل نویز

کمربندهای پیش کشنده

كنترل باد تاير TPMS

 

 

 

 

 

 

 

 

 

 

مقاله ترجمه شده رایگان مکانیک خودرو درباره ترمزهای دیسکی

How Disc Brakes Work

How Brakes Work

Brake Image Gallery­

ترمز دیسکی

We all know that pushing down on the brake pedal slows a car to a stop. But how does this happen? How does your car transmit the force from your leg to its wheels? How does it multiply the force so that it is enough to stop something as big as a car?

When you depress your brake pedal, your car transmits the force from your foot to its brakes through a fluid. Since the actual brakes require a much greater force than you could apply with your leg, your car must also multiply the force of your foot. It does this in two ways:

Mechanical advantage (leverage)

Hydraulic force multiplication

The brakes transmit the force to the tires using friction, and the tires transmit that force to the road using friction also. Before we begin our discussion on the components of the brake system, we'll cover these three principles:

Leverage

Hydraulics

Friction  

Leverage and Hydraulics

In the figure below, a force F is being applied to the left end of the lever. The left end of the lever is twice as long (2X) as the right end (X). Therefore, on the right end of the lever a force of 2F is available, but it acts through half of the distance (Y) that the left end moves (2Y). Changing the relative lengths of the left and right ends of the lever changes the multipliers.


The pedal is designed in such a way that it can multiply the force from your leg several times before any force is even transmitted to the brake fluid.

The basic idea behind any hydraulic system is very simple: Force applied at one point is transmitted to another point using an incompressible fluid, almost always an oil of some sort. Most brake systems also multiply the force in the process. Here you can see the simplest possible hydraulic system 

Simple hydraulic system

In the figure above, two pistons (shown in red) are fit into two glass cylinders filled with oil (shown in light blue) and connected to one another with an oil-filled pipe. If you apply a downward force to one piston (the left one, in this drawing), then the force is transmitted to the second piston through the oil in the pipe. Since oil is incompressible, the efficiency is very good -- almost all of the applied force appears at the second piston. The great thing about hydraulic systems is that the pipe connecting the two cylinders can be any length and shape, allowing it to snake through all sorts of things separating the two pistons. The pipe can also fork, so that one master cylinder can drive more than one slave cylinder if desired, as shown in here
Master cylinder with two slaves

The other neat thing about a hydraulic system is that it makes force multiplication (or division) fairly easy. If you have read How a Block and Tackle Works or How Gear Ratios Work, then you know that trading force for distance is very common in mechanical systems. In a hydraulic system, all you have to do is change the size of one piston and cylinder relative to the other, as shown here.
Hydraulic multiplication

To determine the multiplication factor in the figure above, start by looking at the size of the pistons. Assume that the piston on the left is 2 inches (5.08 cm) in diameter (1-inch / 2.54 cm radius), while the piston on the right is 6 inches (15.24 cm) in diameter (3-inch / 7.62 cm radius). The area of the two pistons is Pi * r2. The area of the left piston is therefore 3.14, while the area of the piston on the right is 28.26. The piston on the right is nine times larger than the piston on the left. This means that any force applied to the left-hand piston will come out nine times greater on the right-hand piston. So, if you apply a 100-pound downward force to the left piston, a 900-pound upward force will appear on the right. The only catch is that you will have to depress the left piston 9 inches (22.86 cm) to raise the right piston 1 inch (2.54 cm).

Friction

Friction is a measure of how hard it is to slide one object over another. Take a look at the figure below. Both of the blocks are made from the same material, but one is heavier. I think we all know which one will be harder for the bulldozer to push.


Friction force versus weight

To understand why this is, let's take a close look at one of the blocks and the table:


Because friction exists at the microscopic level, the amount of force it takes to move a given block is proportional to that block's weight.

Even though the blocks look smooth to the naked eye, they are actually quite rough at the microscopic level. When you set the block down on the table, the little peaks and valleys get squished together, and some of them may actually weld together. The weight of the heavier block causes it to squish together more, so it is even harder to slide.

Different materials have different microscopic structures; for instance, it is harder to slide rubber against rubber than it is to slide steel against steel. The type of material determines the coefficient of friction, the ratio of the force required to slide the block to the block's weight. If the coefficient were 1.0 in our example, then it would take 100 pounds of force to slide the 100-pound (45 kg) block, or 400 pounds (180 kg) of force to slide the 400-pound block. If the coefficient were 0.1, then it would take 10 pounds of force to slide to the 100-pound block or 40 pounds of force to slide the 400-pound block.

How Disc Brakes Work

Most modern cars have disc brakes on the front wheels, and some have disc brakes on all four wheels. This is the part of the brake system that does the actual work of stopping the car.

Brake Image Gallery

ترمز دیسکی

 

The most common type of disc brake­ on modern cars is the single-piston floating caliper. In this article, we will learn all about this type of disc brake design 

Disc Brake Basics

Here is the location of the disc brakes in a car:

The main components of a disc brake are:

The brake pads

The caliper, which contains a piston

The rotor, which is mounted to the hub

 

Parts of a disc brake

The disc brake is a lot like the brakes on a bicycle. Bicycle brakes have a caliper, which squeezes the brake pads against the wheel. In a disc brake, the brake pads squeeze the rotor instead of the wheel, and the force is transmitted hydraulically instead of through a cable. Friction between the pads and the disc slows the disc down.

A moving car has a certain amount of kinetic energy, and the brakes have to remove this energy from the car in order to stop it. How do the brakes do this? Each time you stop your car, your brakes convert the kinetic energy to heat generated by the friction between the pads and the disc. Most car disc brakes are vented.  

Disc brake vents

Vented disc brakes have a set of vanes, between the two sides of the disc, that pumps air through the disc to provide cooling 

Self-Adjusting Brakes

The single-piston floating-caliper disc brake is self-centering and self-adjusting. The caliper is able to slide from side to side so it will move to the center each time the brakes are applied. Also, since there is no spring to pull the pads away from the disc, the pads always stay in light contact with the rotor (the rubber piston seal and any wobble in the rotor may actually pull the pads a small distance away from the rotor). This is important because the pistons in the brakes are much larger in diameter than the ones in the master cylinder. If the brake pistons retracted into their cylinders, it might take several applications of the brake pedal to pump enough fluid into the brake cylinder to engage the brake pads.  


Self-adjusting disc brake

Older cars had dual or four-piston fixed-caliper designs. A piston (or two) on each side of the rotor pushed the pad on that side. This design has been largely eliminated because single-piston designs are cheaper and more reliable.

Emergency Brakes

In cars with disc brakes on all four wheels, an emergency brake has to be actuated by a separate mechanism than the primary brakes in case of a total primary brake failure. Most cars use a cable to actuate the emergency brake.

Disc brake with parking brake

Some cars with four-wheel disc brakes have a separate drum brake integrated into the hub of the rear wheels. This drum brake is only for the emergency brake system, and it is actuated only by the cable; it has no hydraulics.

Other cars have a lever that turns a screw, or actuates a cam, which presses the piston of the disc brake.  

Servicing Your Brakes

The most common type of service required for brakes is changing the pads. Disc brake pads usually have a piece of metal on them called a wear indicator. 

Disc brake pad

When enough of the friction material is worn away, the wear indicator will contact the disc and make a squealing sound. This means it is time for new brake pads.

There is also an inspection opening in the caliper so you can see how much friction material is left on your brake pads.

Sometimes, deep scores get worn into brake rotors. This can happen if a worn-out brake pad is left on the car for too long. Brake rotors can also warp; that is, lose their flatness. If this happens, the brakes may shudder or vibrate when you stop. Both of these problems can sometimes be fixed by refinishing (also called turning or machining) the rotors. Some material is removed from both sides of the rotors to restore the flat, smooth surface.

Refinishing is not required every time your brake shoes are replaced. You need it only if they are warped or badly scored. In fact, refinishing the rotors more often than is necessary will reduce their life. Because the process removes material, brake rotors get thinner every time they are refinished. All brake rotors have a specification for the minimum allowable thickness before they need to be replaced. This spec can be found in the shop manual for each vehicle 

ترمز های دیسکی چگونه کار می کند

ترمزها چگونه کار می کنند؟

همگی می دانیم که فشردن پدال ترمز ماشین،سرعت را می کاهد.اما چگونه؟چگونه ماشین نیروی پای شما را به چرخ ها منتقل میکند؟چگونه نیروی شما را چند برابر می کند تا برای متوقف کردن جسمی به بزرگی یک ماشین کافی باشد؟

  ترمز دیسکی

طرحی کلی از سیستم ترمز

 در این مقاله که اولین مقاله از ۶ سری مقالات در مورد ترمز است،ما زنجیره ای از اتفاقاتی را که از فشردن پدال تا چرخ ها طی می شود دنبال خواهیم کرد.این قسمت،مفاهیم اساسی ای که در پشت سیستم ترمز ماشین نهفته است را پوشش می دهد و یک سیستم ساده ترمز ماشین را امتحان می کند.در مقالات بعدی،ادامه اجزای سیستم ترمز را با جزییات و نحوه عملکرد توضیح داده خواهد شد.وقتی شما پدال ترمز را می فشارید،ماشین نیروی پای شما را از طریق یک سیال به ترمز ها منتقل میکند.زیرا ترمزهای واقعی نیرویی خیلی بیشتر از نیرویی که شما توسط پایتان وارد می کنید نیاز دارد.ماشین باید نیروی پای شما را چند برابر کند.این کار از طریق ٢ روش انجام میشود:

١-مزیت مکانیکی(اهرمها)

٢-افزایش هیدرولیکی نیرو

ترمزها نیرو را از طریق اصطکاک به چرخ ها منتقل می کنند و چرخ ها نیز این نیرو را توسط اصطکاک به جاده می دهند.

قبل از اینکه بحث را بشکافیم،اجازه دهید این ٣ قانون را یاد بگیریم:

 ● دستگاه اهرمی

 ●  دستگاه هیدرولیکی

 ● دستگاه اصطکاکی

 

دستگاه اهرمی

 پدال به نحوی طراحی شده که میتواند نیروی پای شما را قبل از اینکه هرگونه نیرویی به روغن ترمز وارد شود چند برابر کند.

 

افزایش نیرو

 

در شکل بالا،نیروی F به سمت چپ اهرم وارد شده است.سمت چپ اهرم (2X) دو برابر سمت راست(X) است.در نتیجه در سمت راست اهرم،نیروی 2F ظاهر میشود،ولی در نصف جابجایی (Y) نسبت به سمت چپ(2Y).تغییر نسبت سمت چپ و راست اهرم تعیین کننده نسبت نیروی دو طرف است.

 

سیستم هیدرولیکی

ایده اساسی ساده ای در پشت هر سیستم هیدرولیکی نهفته است: نیروی وارد به هرنقطه از سیال تراکم ناپذیر،که عموماً یک نوع روغن می باشد،به همان اندازه به مابقی نقاط منتقل می شود.بیشتر سیستم های ترمز از این طریق نیرو را چند برابر می کنند.در اینجا شما ساده ترین سیستم هیدرولیکی را مشاهده می کنید.

یک سیستم ساده ی هیدرولیکی

در شکل بالا،دو پیستون(به رنگ قرمز)در دو استوانه شیشه ای,پر شده از روغن,گنجانده شده اند و از طریق یک لوله پر از روغن به یک دیگر متصل اند.اگر شما یک نیروی رو به پایین به یک پیستون وارد کنید(مثلاً سمت چپی در شکل)نیرو از طریق لوله روغن به پیستون بعدی منتقل می شود.از آن جایی که روغن تراکم ناپذیر است،کارایی بسیار بالاست.تقریباً تمامی نیروی اعمال شده در پیستون دوم تولید می شود.نکته مهم در مورد سیستم هیدرولیکی اینست که لوله متصل کننده دو پیستون به هر شکل و طولی می تواند باشد،به طوری که امکان هر گونه تغییر شکل را در مسیر انتقال نیرو میسرمی کند.این لوله همچنین می تواند چند شاخه شود،در نتیجه یک پیستون مادر می تواند بیش از یک شاخه،در صور نیاز داشته باشد،همان طور که در شکل نشان داده شده است.

 

یک نکته شسته رفته دیگر در مورد سیستم هیدرولیک اینکه می تواند نیرو را چند برابر کند،(یا تقسیم کند)اگر شما "چگونه قرقره و جعبه دنده کار می کنند؟" یا "نسبت دنده چگونه کار می کند؟" را خوانده باشید،حتماً می دانید که مبادله نیرو و جابه جایی در سیستم های مکانیکی بسیار مرسوم است.در یک سیستم هیدرولیکی ،کافیست سایز یک پیستون را نسبت به دیگری متفاوت انتخاب کنیم،مطابق شکل:

افزایش هیدرولیکی نیرو

برای تعیین ضریب افزایش در شکل بالا،با توجه به اندازه پیستون ها کار را شروع می کنیم،فرض کنید که قطر پیستون درسمت چپ ٢ اینچ,در سمت راست 6 این باد.مساحت هر پیستون از رابطه πr2 دست می آید.پس مساحت پیستون سمت چپ 3/14  و سمت راست 28/26 است.پیستون سمت راست 9 برابر پیستون سمت چپ است،این بدان معناست که نیرویی معادل 9 برابر نیروی اعمال شده به پیستون سمت چپ،در پیستون سمت راست تولید می شود.پس اگر یک نیروی 100 پوندی به پیستون چپ وارد کنیم،نیروی معادل 900 پوند در سمت راست تولید می شود.تنها نکته این ست که شما باید پیستون سمت چپ را 9 اینچ پایین ببرید تا پیستون سمت راست 1 اینچ بالا بیاید.

 

 اصطکاک

 اصطکاک،میزان سختی حرکت دادن یک جسم بر روی جسم دیگر است.نگاهی به شکل زیر بیندازید.

١-هر دو جسم از یک جنسند،ولی یکی سنگین تر است.فکر می کنم که همه ما می دانیم که کدام یک سخت تر جابجا می شود.

 

نیروی اصطکاک در برابر وزن

برای درک دلیل این موضوع،اجازه دهید یک نگاهی از نزدیک به یکی از بلوک ها بندازیم

 

 

ترمزهای دیسکی چگونه کار می کنند؟

بیشتر اتومبیل های امروزی روی چرخ های جلو و برخی روی هر چهار چرخ ترمز دیسکی دارند. شکل زیر قسمتی از سیستم ترمز را نشان می دهد که نقش اصلی را در متوقّف ساختن اتومبیل دارد.

  ترمز های دیسکی

 ترمز دیسکی

معمول ترین نوع ترمز دیسکی در اتومبیل های امروزی كاليپر شناور تك پيستوني است. در این مقاله، همه چیز را درباره ی این نوع ترمز دیسکی خواهیم آموخت.

قسمت های اصلی ترمز دیسکی

شکل زیر محل ترمز های دیسکی را در اتومبیل نشان می دهد:

مکان ترمز دیسکی

اجزای اصلی ترمز دیسکی از این قرارند:

·        لنت ترمز

·        كاليپر، كه شامل يك پيستون است

·        روتور، که به توپی چرخ متصل است

بخش های ترمز دیسکی

ترمز دیسکی به ترمزهایی که در دوچرخه ها کار گذاشته شده اند، شباهت بسیاری دارد. ترمز های دوچرخه مجهز به یک کالیپر می باشند، که لنت های ترمز را روی چرخ فشار می دهد. در یک ترمز دیسکی، لنت های ترمز به جای چرخ ها ، روتور را تحت فشار قرار می دهند، و نیرو به جای اینکه از طریق کابل منتقل شود به صورت هیدرولیکی انتقال می یابد. اصطکاک به وجود آمده بین لنت ها و دیسک، سرعت دیسک را کاهش می دهد.

هر اتومبیل در حال حرکت، میزان معینی انرژی جنبشی دارد، و ترمزها برای متوقف ساختن باید این انرژی را از اتومبیل بگیرند. ترمزها چگونه این کار را انجام می دهند؟ هر بار که اتومبیلتان را متوقف می سازید، ترمزها انرژی جنبشی را به گرمای حاصل از اصطکاک بین لنت ها و دیسک تبدیل می کنند. بیشتر ترمزهای دیسکی بادی هستند.

بادگیرهای ترمز دیسکی

ترمزهای بادی تعدادی پره بین دو طرف دیسک دارند که هوا را از میان دیسک عبور داده و آن را خنک می کند

ترمزهای خود تنظیم

ترمزهای دیسکی از نوع کالیپر شناور تک پیستونی، خود محور و خود تنظیم هستند. کالیپر قادر است روی دیسک از سمتی به سمت دیگر بلغزد، بنابراین هر بار که ترمزها به کار گرفته شوند کالیپر به طرف مرکز دیسک حرکت می کند. همچنین به دلیل اینکه هبچ فنری برای دور نگه داشتن لنت ها از دیسک وجود ندارد، لنت ها همواره در تماس جزئی با دیسک باقی می مانند (بست لاستیکی پیستون و در واقع هر گونه لقی در روتور می تواند لنت ها را به فاصله ی اندکی از روتور نگه دارد). این مسئله بسیار مهم است، زیرا قطر پیستون های ترمز بسیار بیشتر از قطر سیلندر های اصلی خودرو است. اگر پیستون های ترمز در سیلندر جمع شوند، ممکن است گرفتن و درگیر شدن مجدّد لنت ها تنها با چندین بار استفاده از پدال ترمز برای انتقال روغن ترمز به سیلندرها میسّر باشد.

ترمز دیسکی خود تنظیم

خودروهای قدیمی تر مجهّز به مدل کالیپر ثابتِ یا چهار پیستونی بودند. یک (یا دو) پیستون در هر طرف روتور لنت را روی آن سمت فشار می داد. این مدل به طور کامل منسوخ شده است زیرا مدل های تک پیستونی ارزان تر و بسیار مطمئن تر هستند

ترمز های اضطراری

 در خودروهایی که روی هر چهار چرخ ترمز دیسکی دارند، برای مواقع از کار افتادن ترمزهای اصلی، یک ترمز اضطراری با مکانیزمی مستقل از ترمزهای اصلی کار گذاشته می شود. در بیشتر خودروها از یک کابل برای به کار انداختن ترمز اضطراری استفاده می گردد.

 ترمز دستی

برخی خودروها با چهار ترمز دیسکی، یک ترمز جداگانه به نام ترمز طبلی هم دارند که به توپی چرخ های عقب متّصل می شود. این ترمز فقط مخصوص سیستم ترمز اضطراری است، و تنها توسّط کابل فعّال می شود وسیستم هیدرولیکی ندارد.

در خودروهای دیگر اهرمی تعبیه شده که باعث چرخش یک پیچ، یا حرکت دندانه ای می شود که پیستون ترمز دیسکی را منقبض می کند

سرویس کردن ترمزها

 معمول ترین سرویسی که ترمزها به آن نیاز دارند، تعویض لنت ها است. لنت های ترمز دیسکی معمولاً شامل قطعه ای فلزّی هستند که شاخص ساییدگی نامیده می شود.

لنت ترمز

زمانی که به میزان کافی از مادّه ی روی لنت، تحت اصطکاک ساییده شود، شاخص ساییدگی با دیسک تماس پیدا کرده وصدای جیغ مانندی تولید می کند. این بدان معنیست که زمان تعویض لنت ها فرا رسیده است.

همچنین روی کالیپر شکافی برای بازدید و معاینه وجود دارد، بنابراین شما می توانید مقدار مادّه ای که روی لنت ها باقی مانده است را ببینید.

گاهی ساییدگی های عمیقی در روتورِ ترمز رخ می دهد. روتورها همچنین ممکن است به اصطلاح تاب بردارند یا منحرف شوند؛ یعنی مسطّح بودن خود را از دست بدهند. اگر این اتّفاق بیفتد، به هنگام توقّف ممکن است ترمزها دچار لرزش و ارتعاش شوند. هر دو مشکل اغلب با بازپرداخت(تراشکاری یا ماشین کاری) روتور رفع می شوند. برای این کار از هر دو سمت روتور مقداری مادّه برداشته شده و سطح صاف و هموار حاصل می شود.

نیازی نیست در هر بار جایگزین کردن کفشک های ترمز، عمل بازپرداخت را انجام دهید. در واقع تنها زمانی این عمل احتیاج است که آنها تاب خورده و یا تحت ساییدگی زیاد قرار گرفته باشند. اگر روتورها بیش از حدّ لازم ماشین کاری شوند، عمرشان کاهش می یابد. به دلیل اینکه این عمل با جدا کردن مادّه از سطح همراه است، روتورهای ترمز بعد از هر بار ماشین کاری نازک و نازک تر می شوند. همه ی روتورهای ترمز برای حدّاقل ضخامت مجاز قبل از نیاز به تعویض قطعه، مشخّصه ای دارند. این مشخّصه را می توان در کتاب راهنمای مربوط به هر خودرو پیدا کرد

 

منبع انگلیسی :  http://auto.howstuffworks.com/disc-brake.htm

منبع ترجمه : پارسی خودرو http://www.parsikhodro.com

ترجمه توسط  صبا سمنکان

 

قرار دادن متن انگلیسی به همراه ترجمه فارسی  تنها جهت افزایش اگاهی شما می باشد در ضمن متن با کمی ویرایش می باشد